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Classroom Learning and instruction Project {CLIP)

Technicai Report Series

The Classroom Learning and Instruction Project (CLIP) reports consist of a series of technical reports
describing a program of research at the Laaming Research and Development Center, University ot
Pittsburgh. This research is supported by a number of private and public non-military agencies and is
under the general direction of Gaea Leinhardt. The theme of the research included in this series is the
relationship between teaching and tearning in particular subject-matter areas such as mathematics and
history. Some papers focus on teachers and how their understanding of specific content (e.g., graphing
functions) impacts on their teaching; some papers focus on new assessment instruments that are
attempting to measure the complexity of the interrelationship between content knowledge and
pedagogy; others focus on the students and how their leaming is influenced by their own prior
knowledge in a content area and by the teacher's instruction. it is hoped that the cumulative findings of
these studies will contribute to our understanding of leaming and teaching. Particularly they will contribute
to those aspects that are unique o particular topics and may in tum enrich our understanding of the field

of teaching and leamning as a whole. A list of CLIP reports appear at the end of this report.
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Clement, J. (1985). Misconceptions in graphing. In L. Streefland (Ed.),

July

Proceedings of the ninth international conference of the International

Group for the Psychology of Mathematics Education, (Vol. 1, pp. 369-
375). Utrecht, The Netheriands: IGPME.

A competence model is proposed which then serves as a theorelical framework for
providing cognitive explanations for the errors that students make when interpreting
graphs. (The errors are both errors that have been reported in the literature and errors that
have been observed in the author's own research; most of the graphs are qualitative).

Two types of common misconceptions are then discussed in terms of the model:

1) treating the graph as a picture, and
2) confusing slope and height.

8
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Clement, J. (1989). The concept ot varlallon and mlsconceptlons in Caneslan

. See above

grapmng Focus

This paper is very similar to Clement (1985)°. The competence mode! proposed has four
levels of representation of a situation:

1) practical representation

2) isolated vaiue comrespondence

3) length model

graph model

This stam model has a more dynamic version that emphasizes representations of variation.
Both models could be usetul in understanding histcrical developments of the notion of
function as well as new instructional strategies.

Two types of graphing misconcepﬁons (reported by others and aiso observed by the
author) are explained through this model
1) slope-height confusion--can be due fo a misplaced link between a successfully
isolated variable and an incomect feature of the graph (or unsuccessful isolating of the
two variables).
2) treating a graph as a picture--in which a student appears to be making a figurative
correspondence between the shape of the graph and some characteristics of the
problem scene. There could be a global correspondence error or a local
correspondence efror.

Oresme's diagram (1361) is discussed and shown to use vertical lines in the same way as
they are used in level 4 of the static model. In modem notation the vertical lines are
omitted, even though there is some evidence suggesting that vertical line graphs are fairly
natural and intuitive symbolizations for children (10-year- olds)--thus such line graphs may
be uselul for introducing graphs amf functions.

CLIP-90-01 1990
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Clements, K. (1981, 1982). Visual imagery and school mathematics. For the
Learning of Mathematics, 2(2), 2-9; and 2(3), 33-39.

This article covers the following:
1) Work in psychology on difficuities assoclated with decodirg images.
2) Sternberg--how pupils’ strategies could fiip-flop between verbal and visual
repraesentations.
3) Math education section is general.

Aims to investigate the role of visual or spatial imagery in mathematics leaming.

Pmyaslnthemind

-Propositional theories of imagery (i.e., knowledge can be represented by sels of

propositions. mmmmmmm\a@smbegenmted)
C,oncltmes atpmsem ihemtsnosmtgreasontodiscardpmetheoq

-Flnde an appropﬂa!a mseamh mmodobgy -
—lmmspective mpomng-pms and cons
fis S Magelyv o8 M'ﬂ'wong
Alls ; : gl imagery skilis--Soviets have done more in this reaim.
-Twyman (1972) "The cteaﬁon of an image can introduce difficuities associated
with decoding the image.” For example. images might possess irrelevant details that
distract pupils from the main elements in the original problem stimulus, and make it
more difficult for them to formulate necessary abstractions.

-Gagne & White suggest that teachers might require students to "paraphrase”
diagrmns to ensum that studenm havo digested diagrams.

Stembetg- F!owchan ior apresentaﬁon
Suams that may be adopied for Verbalizer, Visualizer & mixed

-ATl-mlxed

-Marriolt (1978)--Children taught with manipulatives tended to use them more in
problem solving (Fractions)

-Fary--Even though 3 methods of instruction were used to teach operations on
integers, all kids wanted algorithms

10
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Davidson, P.M. (In press). Early function concepts: Their development and
relation to certain mathematical and logical abilities. Child Development.

Purpose: The purpose of the study was to investigate the relationship between tunctional
thinking and performance on Piagetian-fike operation tasks.

Sample: 72 children in the age range of 5 - 7 were administered 3 categories of tasks.

Tasks: 1) functions defined as exchanges of properties (e.g. colors)
2) tunctions defined as rotations of regular polygons
3) morphisms, or functions that preserve an operation or relation.

Findings: Consistent with other findings (Case et al.. 1986; Piaget et al., 1968, 1977)°,
the subjects accurately solved problems involving nonnumerical functional relations by
age 5 or 6. Further, the results suggest a possible process by which devaloping function
notions may contribute to the emergence an understanding of reversible operations. The

ncipal developmental finding was a shift from trial-and-error strategies to anticipatory or
inferential strategies. Finally, the results also suggest that functional reasoning may
develop within separate domains, with functions involving extensive content having
implications for quantitative operations, and those involving infensive content having
implications for logical operations.

" Case. R., Marini, Z., McKeough, A., Dennis, S., & Goldberg, J. (1886). Horizontal structure in
nﬂddedﬁl&md Theacmﬂsﬁonoldhnensiondoperam nl Levin(Ed) Siage and

Plaget, J., Grize, J.B., Szeminska, A., & Vinh-Bang. (1988). Episte
functions (F. Castellanos & V. Anderson, Trans.). Dordrecht, TheNetheﬂands D Remel
{(Original work published in 1968.)

July ' CLIP-90-011 { 1990
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Dreyfus. T.. & Eisenberg, T. (1

July

82). Intuitive functional concepts: A baseline
[1¢ ! MasSen ! e LIt = y

study on intuitions. DU
13(5), 360-380.

Purpose: This paper examines junior high students’ mathematical intuitions in the
particular area of functional concepts and considers four hypotheses.

H¢:  Intuitions on functional concepts grow with pupils’ progress through grades.

H2: Intuitions are independent of sex.

H3: inhdtions of high-level students are more often corect than those of low- level
students.

Hg: Intuiions are more often comect in concrete situations than in abstract ones.

The authors introduce a 3 dimensional block for thinking about function knowledge, where
the x axis displayed seftings (or representations), the y axis displayed concepts, and the z
axis displays levels of abstraction or generalization.

Sampie: Thesamphisdmwniromsmdentshgradessﬂwughshdassroomdeﬁned
as either High or Low Absolv (Absolv = combined abifity/social disadvantage ranking). 24
classrooms from 12 schools in Israel were equally distributed across grade and Absolv.

Methods: Al subjects were lested at the beginning of the school year with one of three
questionnaires on function concepts. In each classroom students randomly received
eimenmdagmn.megsaphormetaunonnasthesaningonwmmmeymtestedm
5 concepts, each at 2 leveis of abstraction.

Findings: Significant differences in performance were found for Absolv (High di1 better).
Grade {overall improvement from 6 to 9), and Setting (Diagram most difficult). Within Grade,
there was a dip from 7th to 8th for Low Absolv subjects. Within Setting, graphs were
preferred by High Absolv subjects & tables by Low Absolv subjacts. No overall difference
bySex.exceMﬂmtboysddbeﬂerhgmdssG&?.andgkisdidbeﬂerhgmdeseas.
May be related to girls’ earlier maturation or boys’ diminishing seriousness. Previous
studies of mathematics abllity of girls this age show them to have poor attitudes and poor
performance. Girls’ superior intuitions in these resuits demonstrate the need to consider a

teaching approach that exploits their intuitions.

Considering levels of abstraction, all factors that were significant on the whole test carried
over to the concrete part. All factors excep! setting and 3-way grade-by-Absolv-by-sex
carried over fo the the abstract part.

Among concept, image was answered best and siope worst. Within setting-by-Absolv,
Low Absolv students preferred tables and High Absolv students preferred graphs. across

almost all concepts.

There was a noticeable drop between 7th and 8th grads performance on Cartesian
coordinates despite 7th grade instruction on the topic.

Conclysions:
1) Pupiis’ intuitions on functional concepts do grow with pupils’ progres~ through the
grades.
2) Boys and girls have equal intuitions afthough they develop at different rates.
3) High Absolv puplis have more correct intuitions than Low Absoly pupils.
4) Reject the 4th hypothesis. Intuitions are no more correct in concrete situalions than
abstract.

12
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Dufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical
considerations concemlng me prob!em ol represematlon n c Janvier
(Ed.), Problems : - :
mathematics (pp. 109-122) Hmsdale NJ Eﬂbaum

Makes distinction between internal & external representations:
-internal--mental formulations of reality (the signified)
-External--all external symbolic organizations that attempt fo represent a certain
mathematical reality (the signifier)

The chapler is mainly concerned with extemal representations, but also examines how
internal representations can be finked to external representations in leaming. The chapler
attempts to answer five questions ab)ut the use of representations by presenting
examples and summaries of the authors’ research, most of which has been conducted with
elementary students. The five questions and answers appear below.

-Representations are an inherent part of math (i.e., representations are used as
toois for treating concepts) Certain represemtations are so closely associated to a concept
that it is hard to see how the concept can be conceived without them.

-Representations are muitiple concretizations of a concepl. We want
students to grasp the common properties and extract the intended structure.

-Representations are used locailly 1o mitigate certain difficuities.
1) a task is given along with several representations hoping that the student will find
one useful
2) in the course of leamning a concept, sporadic recourse is made !o representations
on which the student may lean

3) teacher draws attention momentarily to a difficulty.

-Representations are intended to make mathematics more attractive and
interesting. Representations are used in textbooks to motivate the child or to present
analogies lo the real world.

Side point: Some representations have as their primary concemn to be as accessible as
possible 1o students, whereas others have as their primary concern the math objsect ilself.

-Leamer perceives the represeniations as tools.

-Leamner appropriately selects one representation and rejects another and knows why

-Leamner passes (translates) from one representation to another

-Leamer knows possibilities, imits, and effectiveness of each representation

-Leamer wil be able to grasp the common properties of diverse representations and be
able tv construct the intended

-Leamer will soive a given task using the suggested representation

-Leamer will approach tasks with the attitude that if one representation does not work he

-Are conventional math representations perceilved as tools for solving
problems? Exampie given from their research of students not using graphs to help
them solve an equation.

13
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-How do concrete mulitiple representations used in current teaching
contribute to the child’s construction of the concept?

According to their research, children often do not realize that different representations
embody the same situation. Example of subtracting on an abacus and with paper and
pencil.

-To what point can a chiid, who is experiencing difficully in solving a
problem. select a representation that will bring him to resoive this same
problem?

Does a child really "select” a representation?--No, they simply retain the one that was
provided or use the one which is most famillar to ¢--m (even though it may not be the most
appropriate). Does tha child see the same task in each of the representations given?--
Children say that there are as many different problems as there are representations. They
will say that two representations concem the same problem only if the same numbers are in
both.

is the child convinced that regardiess of the particular representation he uses he will
necessarlly arrive at the same result?--No. They give an exampie of a child comrrectly
working through a problem using one representation and then shown the incorrect answer
of another child who worked through the same problem using a different representation.
The child shows no distress over ihe fact that the same problem has two ditterent answers.

How do children develop the attitude of having recourse to representations in case they
encounter difficuities?--by acquiring the conviction that representations can be a help in
unscrambling a problem situation. According lo their research, most students do not have
this conviction.

-Examples of representations introduced prematurely: Children being
introduced to ">" and 2-dimensional tables before they can comprehend them. Teaching
the representation beromes the goal rather than using it as a tool for attaining the “real”
goal of increased math understanding.

-Examples of representations used Iinappropriately: The numberline
representation has several misconceptions associated with it: the stepping-stone
analogy, the lack of appreciation for equal distances, and the "amow.” Authors suggest
that these potential problems can lead to problems in later leamning. Teachers oflen use
external repsesentations for a problem situation without reafizing the discrepancy that can
exist between those used and the one envisioned by the child.

In troditional teaching, representations are imposed from the outside; children are nol
encouraged to construct or exploit their own mathematical representations. The only
times that they may be encouraged to "think up”® a representation is in word problems.
Examples are provided of children not spontaneously using representations to explain or

solve a problem.

14
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- Even, R., Lappan, G., & Fitzgeraid, W. (1988, November). Pre-service teachers’

July

conceptions of the relationship between functions and oquations. In
M.J. Behr, C.B. Lacampagne, & W.W. Wheeler (Eds.), Proceedings of the
N 8 B ! : N 2 RS ki

= A : yise
(pp. 283-289).

e ’ I8
DeKalb iL: IGPME-NA.

Purpgse: The purpose of this paper was fo report on a study of prospective high-school
teachers’ understandings of the relationship between functions and equations.

Subjects: 152 prospective secondary math teachers, in their last phase of professional
education.

Tasks were designed to get at subject-matter content knowledge and pedagogical
content knowledge about the notion of a function, in particular the relation between
graphical and algebraic representation of a function.

Daia collection: An open-ended questionnaire was administered to all subjects and 10
subjects were inlerviewed on abstract functions.

Results: {(based mainly on the questionnaire):
1) The role of equations in the definition and image of function:
a) close to 20°% identified the notion of a function with its algebraic representation;
b) almost 50% related functions directly to an equation in at least 1 out of 2 of their
answers to a pair of questions.
2) The values of functions as solutions to equations:
a) 80% did not make the connection between the two representations.

CLIP-90-01 1990
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Goldenberg, E.P. (1988). Mathematics, metaphors, and human tactors:

July

Mathematical, technical, and pedagogical challenges in the educational

use of graphical representation of functions. Journai of Mathematicai
Behavior, 7, 135-173.

This paper deals with implications of graphical technology on the learning of graphing and
functions. The author raises the issue that even though children work with visual forms
(r.g. drawings) for many years, way before studying graphs in general and graphs of
functions in particular, graphs are not more accessible to students than other symbolic
iepresentations. Graphs have their own conventions and ambiguities, which earlier
experience does not necessarily make easier. This can mean that graphical
representations are in a way unique kinds of symbolic representations. On the one hand
one tends to rely on what one sees in a graph {more than in other less visual symbois), yet
the conventions are oflen quite different than expected, so relying on what one aclually
sees may turn out misleading in many instancas. There is some evidence in Goldenberg's
work that suggests that perception may be more dominant in some cases over logical
thinking, when a conflicting situation arises.

There are several sourcas of graphical fllusions that might be created by a computer:
1) finitude of the "window"
2) shape of “window"
3) position (comparative)
4) scaling {"picture” changes)
5) difference between a dot and a point

Learning through a computer allows the development of different notions of a function
machine. These notions are:

1) number in/numbe - out machine (variable)

2) number infflunction out machine (parameter)

3) number in/pair out machine (point)

4) function inAunction out machine (transformation)

5) tunction in/graph out machine (object)
The computer also may create a “magic” etfect that should be taken into account.

16
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Greeno, J. G. (1988, November). The situated activities of learning and knowing

mathematics. n M.J. Behr, C.B. Lacampagne, & M.M. Wheeler
BSenie Bt D nua 20 3O g G .

(Eds.),

e RIRPIEgE rOUn -
Education, (pp. 481-521). DeKalb IL: IGPME-NA

Conceptual Framework. The author begins by laying out a context for his research on the
concept of function. He first develops ideas related to the active and the situated nature of
mathematical leaming and knowing. Given these characteristics of mathematical practice,
he notes that the normative mode of classroom instruction, which emphasizes passive
watching and mimicking, cannot be expected to produce individuals who are capable ot
actively generating mathematical meaning. Rather students too often view mathematics as
the rote manipuiation of meaningless symbois and view themseives as possessing a fow
level of mathematical ability.

Research Questions., The research focused on 3 general questions:

1) How one might characterize the implicit understanding that students have
regarding functions and variables;

2) Identifying characteristics of situations in which students reason effectively about
functional relations among quantities;

3) Describing the language that students used as they referred fo quantities that were
properties or relations in the situation that was used 1o exempfify functions.

Method. Ten pairs of students {grades 7-11) were asked to reason about the operation of
a simple machine that embodies linear functions. Intervisws occurred in 5 phases: (1)
students gained familiarity with the system by manipulating the components and talking
about il; (2) sludents were asked questions about specific situations set up by the
experimenter: (3) students were asked to make situations happen (on the machine) that
were verbally described by the experimenter; (4) students were asked a series of
questions requiring inferences based on the linear functions in some situations; and (5)
students were asked a question designed to elicit discussion in general terms.

i . Based on the students’ responses to questions in the fourth section
of the inlerview, the author drew the following tentative conclusions:

1) Students did have an implicit understanding of the concepts of function and
variable. Evidence included the following:

- A clear sense that the number of turns and the final position are functionally
dependent.

- An appreciation that a variable {spodl size) couid take on different values.

- A realization that one variable (spool size) could be compensated by a larger
value of another variable (number of tums).

-An appreciation that the intercepts of functions {starting points) couid be varied.
-An understanding that, for any of 4 variables, the value rould be inferred from
values of the other 3 variables.

-An understanding of the ratio of values of 2 functions.

2) In answer to the question, "What was there about the machine situation that
enabled individuals 1o reason effectively?” The following was suggested: The quantities
and their relations could be observed as structural features of events occurring in the
machine situation. In other words, understanding relationships was supported by the
evident causal relations between turning the handle, winding the string around the spool,
and pulling blocks along the path. Thus concrete objects and events played an important
role in reasoning about complex properties such as quantitative relations.

3) Language serves a crucial role in connecting belween individuals and to situations.
In particular, the levzl of generality may be a key feature to examine when attempling to
understand math principles.
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The author concludes by proposing that instruction treat students as active participants in

the social process of mathematical leaming and suggests that Lampert's {1986, 1988)"
teaching iltustrates that this is possible.

* Lampent, M. (1986). Knowing, doing, and teaching multiplication. Cognition gnd lnstruction, 3(4). 305-
342.

Lampen M. (1988) Theteachersrolehrehvenmgﬂwmmﬂngotmamermﬂcalkmwmgm the

Education. DeKalb, IL: IGPME-NA.,
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Janvier, C. (1981). Use of situations in mathematics education. Educational

July

Studies in Mathematics, 12, 113-122.

Purpose: The study questions a common assumption that situations guarantee
concretization” of abstract notions. Thus i examines the effect a situation may have in the
abstraction process.

Sampie: Twenty secondary level pupiis (ages 11-15) were interviewed: 7 in Istyear, 7 in
2nd year, and 6 in 4th year. In addition, forty pupils of the 1st year received a written form
ot the lask.

Task: The task given to the pupils was a racing car problem. The problem comp:.-es three
paits: 1) the presentation includes a verbal description of the situation represented by the
graph (speed [km/hr] of a racing car along a 3 km track in relation to the distance along the
track [km]), and the graph ilselt. The presentation is followed by 2 central questions (and a
few probes in case the pupll does not answer comrectly). The questions are basically: a)
How many bends are there along the track? b) which bend is the worst? the easlest? the
"second worst"? 2) The graph is replaced by a sheet of paper on which three racing tracks
are drawn. For each track there is a grid on which the student is asked to skeich a speed
graph representing a racing car driving that track: 3) The first graph is brought back and a
sheet of paper with a selection of tracks is presented. The pupil is asked to choose the
one track that is described in the graph.

Resulls: The main mistake pupils commitied was confusing the graph with the track. This
mistake was more common among the 1st year students. Students appeared to use the
graph simultaneously at a symbolic and a pictorial level. Interviews indicated that familiarity
with the situation, namely car racing, was supportive o some of the pupils in using the
graph at the proper symbofic level in the first part of the task. For these students, the third
part became more difficull.

13
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Janvier. C. (1983). Teaching the concept of function. Mathematical Education
ior Teaching, 4(2), 48-60.

The paper lays out some theoretical consideralions regarding the notion of function that
lead o a proposed spiral didactical appoach. This approach comprises three main phases:
1) the concept of variation (staircase analysis)
2) introducing some equation
3) the functional nolation
The paper deals with different meanings of a function, for example, rule, dependent
variable, correspondence, set theory definition, Cartesian product. and particular types of
relations.
The set approach fo functions feaves out the rule, which is the basic notion--didactically
and historically. The relation approach is not biased towards the co-domain.
There are three equivalent notions of a function that are discussed: "the way it varies”,
rules defining types of variations, and functions as mathematical models in situations.

A classification of functions is suggested:
1) non-ordered finite domain
2) ordered finite domain
3) continuous with ordered, dense domain
The claim is that functions of types 1 and 3 are fundamentally different.

Functions dilter along another dimension too--whether there are time dependent variables
{explicit or implicit) or not time dependent.

Functions are usually represented by equations, tables. graphs. or verbal descriptions.
Different types of transiations can be carried out from each mode to another.

20
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Janvier, C. (1987). Translatlon processes ln mamemallcs educauon in C.
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Janvier (Ed.), B he
probiem soiving (pp 27~31) Hmsdale NJ: Er!baum

The author claims that particular uses of representalions are overiooked, specifically the
transiation processes. By fransiation processes he means the psychological processes
invoived in going from one mode of representation 1o another e.g., from an equation 1o a
graph. It is hard o identify the fiterature on transiations because often it is deall with
indirectly/implicitly.

Seven Poinls
1) Comprehensive 4x4 table of translation processes in the graphing domain is provided.

The 4 representations are table, graph, equation, and verbal description.
--filustrates the problem of "naming” a transiation.

2.) Direct and indirect processes are aitemate ways to achieve a transiation.

--Example: moving from a iable to an equation is often carmied out as moving from lable to
graph to equation.

--indirect processes are substantially different from direct processes.

--Math programs develop exclusively “indirect™ vere’ s of translations.

3) Translations (a) invoive two representations, the source & the target; and (b) have the
property of directionality, (i.e., going from a graph to an equation is not the same as going
from an equation to a graph.)

--His research suggests that translation processes are best developed in symmetrical pairs.
4) The role of language: words play a central role in transiations.

--Verbal tags are given to relevant elemenis and the transiation is carried out through the
etficient handling of those tags.

5) Application fo the teaching of music.

6) n his opinion, the study of more complex math topics can be made more meaningful if
approached from the transiation framework.

7) Transiation processes and cumiculum design.
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Kaput, J. J. (1987a. July). Linking representation in the symbol systems ol
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algebra. Unpublished manuscript, Southeastern Massachusetis
University, Department of Mathematics, North Dartmouth.

The author distinguishes between two notions of representations:

1) The notion of mantal representation as the means by which an individual organizes
and manages the flow of expenence.

2.) The notion of reprasentation sysiem as a materially realizable cultural or linquistic
artifact shared by a cullural or language cornmunily.

It shouid be noted that:

1) A mathematical representation system and a mathematical symbolic sysiem are
used synonymously.

2.) A distinction is made between a mathematical representation and a "natural®
nonmathematical representation (i.e. language).

3) There is a direct analogy between the notions of synibo! systems as a specifiable
organizing structure and the idea of grammatical structure in natural language.

According to the author, there are 4 sources of meaning in mathemalics. which are
grouped into 2 complemsentary categories:
A) Refterential Extension:
1. Via fransiations between mathematical representation systems.
2. Via transiations between mathematical and non-mathemalical representations
{such as natural language, visual images. eic.)
B) Consolidation:
3. Via pattern and syntax leaming through transformations within and operations
on particular representaticn system.
4. Via mental entity building through the reificalion of actions. procedures and
concspts into phenomsnological objects which can then serve as the basis for
new actions. procedures and concepts at a higher level of organization (“reflected
abstraction”)
According to the author, the third source is the most dominating in school mathematics.

The author does not assume an existence of an absolute meaning. For example, there are
several different meanings for the mathematical term "function™, and each family of
meanings has its more congenial representations.

22
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Kaput,
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J. J (1987b) Represemation and mathemaucs ln C. Janvler {Ed.),
. N l . pAY b Yo

(pp 19-25) Hlllsdale J Erlbaum

The author argues that even though the idea of representation is continuous with the
mathematics itself, the role of represeniations in the math curriculum is often
underestimated. It seems as if the main focus in the first 8 years is on numbers, while we
really only work with particular representations of numbers. Some of the properties are
sensitive to the represeniation while others are independent of it (e.g. primeness of a
number is an independent property while the simplicity of a graph is sensitive to the kind of
scaling we choose o use).

The author describes a representation system as consisting of 2 worlds and an explicitly
describable correspondence between them under which one Is the representing world
and the other is the represented world. There are aspects of the represented world that
are being represented and aspects of the representing world that are doing the
representing. He mentions 4 broad and interacting types of representations:

1) Cognitive and perceplual representation.

2) Explanatory representation invoiving modeis.

3) Representation within mathematics.

4) External symbolic representation.
He restricts his discussion to cases in which the worlds embody some kinds of
mathematical structures (such as various number systems, vector space, sels of functions
belween number systems, etc.).

A symbol system is a symbol scheme S together with a field of reference F, and a
systemalic rule of correspondence ¢ between them. A mathematical symbol system is a
special symbol system in which F is a mathematical structure. in most cases, F itself is also
a symbol scheme that can be taken to be the representing world in another symbol
system. The medium - a physical camier in which the symbol scheme, hence symbol
system, can be concretely instantiated - plays a role in possibly crealing confusion. In
practice. the syntax of a given symbol scheme is coordinated with its field of reference in
order that the correspondence betwesn them preserves certain attributes. Nonetheless.
a given set of characters. and even certain rules for combining them. may participate in
several different symbol systems and hence have different "meanings”, i.e.. referents.
This situation is responsible for a whole class of symbol-use errors in mathermalics. e.g..
those having to do with the "=" character. which participates in several different, but
related mathematical symbol systems.

The aulhor goes into a detailed analysis of a specific example of several symbolic systems
involved in graphing algebraic equations.

23
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Karplus, R. (1979). Continuous functions: Students’ viewpoints. European
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Journal of Science Education, 1(4), 397-413.

Purpose: The purpose of this study was to identify the procedwres by which secondary-
schoo! students deal spontaneously with data pairs that describe continuous functional
relationships. Based on the hypothesis that functionafily is a reasoning process, answers
to the following three questions were sought:

1) What calegories are needed for classifying students’ responses to tasks requiring
interpolation in a continuous non-finear relationship.

2) How is the distribution of student responses among the above calegoiies
dependent on the students’ grade level and enroliment in math classes?

3) How effective is a briet demonstration of graphical interpolation in changing the
students’ behavior?

Sample: The sample consisted of 377 students from 6th to 12th grade, in a middie to
upper-middie class community.

Method: The subjects were administered tasks by the author, during a regularly
scheduled class. The students were given a booklet with written questions. The first was a
Bacteria Puzzle. The students answered i, and handed in their solutions. A brief
demonstration of a graphical solution to that problem by curvilinear interpolation was given
and then the students were asked to answer the next two questions (Cylinder Puzzle and
Spacecraft Puzzie).

In the first and third items, functionality was a dominant process. The second item was
based on proportions.

Interviews with 37 high school students were conducted to explore the thinking and
rationale behind the written answers.

Findings: The mam categories identified for items 1 and 3 are:
Category I-intuitive
Category SL Straight line
Category SC~-Straight/curved line
Category C--Curved line.

The categories identified for item 2 are:
Category I-infuitive
Category A--Addilive
Category Tr—-Transitional
Category R—-Ratio

in the Funclionality items, students seemed to tend to complete the graph by connecting
two adjacent points with a straight line (SC). This tendency was smaller for older students.

The student responses distribution by categorizes are analyzed in the paper, to each of
the three tasks, foliowed by a discussion of implications for instruction.
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Kersiake, D. (1981). Graphs. In K.M. Hart (Ed.), Children's understanding of
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mathematics concepts: 11-16 (pp. 120-136). Oxford, England: Alden
Press.

Purpose: The purpose of the study (part of CSMS) was to investigate the important
underlying ideas which are necessary components of the understanding of graphs in
schools. These ideas were investigated at various levels of difficuily.

Sample: The sample consisted of 459 second year pupils (13 years old), 755 third year
pupils (14 years oid) and 584 fourth year pupils (15 years old) from a number of dilferent
secondary schools in England.

Method: A lest was constructed that included items focusing on: block graphs and
coordinates. continuous graphs, scattergrams (in which a decision has to be made on
whether the plotted points should be connected and whether there is a meaning to points
between those that are plotted), choice of axes and scales, distance-lime graphs,
gradient, parafiel lines, and equations of straight lines. Some items were presented in
unfamiliar fonns, to prevent students from relying always on learmed techniques

From all the items in the graphs test three groups of items have been identified {same
method. as Kuchemann, 1984). Each grouvp is called a level. and a child is assigned lo the
highest fevel in which s/he is successful on about two-thirds of the items.

The three levels are described below according to the tasks that were invoived in the items
included in them:

Level 1--plotting points. interpreting block graphs, recognition that a straight line
represents a constant rate, and simple interpretation of scattergrams.

Level 2--simple interpolation from a graph, recognition of the connection between rate
of growth and gradient, use of scales shown on a graph, interpretation of simple travel
graphs and awareness of the effect of changing the scale of a graph.

Level 3--understanding of the relation between a graph and its algebraic expression.

Findings: The fourth year had more students al Level 3 than did the two you.._er age
groups. and fewer at level 1. The easiest items were almost equally well done by all age
groups. On the most difficult items there was litlle difference between the two younger

age groups.

The data suggests thal many aspects of graphs are well within the cap.bility of secondary
students. However, there appears to be a large gap between the relatively simple reading
of information from a graph and the appreciation of an algebraic relationship.

Some implications for instruction are discussed.
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Kuchemann, D. (1984). Stages in understanding algebra. Journal of Siruciured
Learning, 8, 113-124.

Purpose: The purpose of the study (part of CSMS) was to help teachers and cumiculum
developers improve the match between the cognitive demand of what children are taught
in the area of generalized arithmetic (the use of letters) and individual chiidren's levels of
understanding.

A Piagetian framework was adopted in developiny tests that served as research and
diagnostic instruments.

Six categories for describing children's inlerpretations were formulated, betore the final
version of the test was designed:

1) letter evaluated

2) letter not used

3) lefier as object

4) letter as specific unknown

5) letter as generalized number

6) lefter as variable

Sample: The sample consisted of 1128 13-year-olds, 961 14-year-olds, and 731 15-year-
olds.

Method: The research instrument was a writlen test containing items in each category.
The first method that was tried was based on item characteristic curves. The measure of
association chosen was the phi coefficient, which was used in two ways: "spider diagrams”
and factor analysis. The consistency of leveis was assessed by using Guttman scalogram
analysis.

The remaining items, after rejecting those with a relative lack of consistency, were
classified into four levels (stages).

Resulls: The findings suggest that the algebra test measures a .Jirly unified aspect of
children’s understanding of generalized arithmetic. The four algebra levels appear o have

some cotrespondence {o Plagetl's descriptions of concrete and operational thinking. {see
Kuchemann, 1981, for more detail).

26

July CLIP-90-01 ‘ 1990




Leinhardt, Zaslavsky, & Stein 20 Annotated Bibliography

Leinhardt. G., Stein, M.K., & Baxter, J. (1988). What a_difference a cilass makes.

Unpublished manuscript, University ot Pittsburgh, Learning Research and
Deveiopment Center, Pittsburgh PA.

The research reported in this paper compares and conirasts the instruction of one teacher
in two diiferent, back-to-back, fifth-grade mathematics classes. Focused on the
presentations of eight lessons on the topic of functions and graphing. this study examines
how Mr. Gene taught the same new malterial under two slightly different sets of
circumstances. This research aims to identity similarities and differences in teaching that
occurred between the two groups, to understand why differences occurred, and o
determine what effects the differences might have had. In addition, the researchers
attempt to detect when the teacher made adjustments in instruction for one group or the
other and to explore the nature of those adjustments.

The teacher divided his class overall mathematics class of 27 students into two ability
groups. with 14 in one and 13 in the other. The former group. considered o be
comparatively brighter, had class immediately before the latter group. The groups are
referred to as the higher group and the lower group, respectively. The lessons were
videotaped and then transcribed in a format that separately shows the teacher's taik, the
teacher's action/demonstration, and the students’ taltk and action. Pre- and post-class
interviews with the teacher were also conducted and transcribed, providing supplementary
data. These data were subjected to four levels of analysis in an atiempt to tind a level at
which each ditference could be most eflectively measured. All variables that might indicate
differences between the two presentations were identified and categorized by level.

Based on analyses of the data at the more global levels. the investigators conciude that
there were more similarities belween the classes than there were differences. In those
areas where differences were found (e.g.. the low group received more lines of prolocol
whereas the high group received higher numbers of subject-matier-based exchanges),
questions were raised regarding the actual content of the instructional episodes. The
more fine-grained analyses of the instructional content suggest that Mr. Gene made
presentations of greater precision and inteffectual clarity to the higher group. Although
hese diflerences were subtie, the authors argue that if a pattern is established (whereby.
for example, the high group is consistently exposed to more key concepts which are
connectad to core material in more precise ways). then ditferences in student learning
might be expected. Possible rationales for these behavior patterns are being explored.
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Mansfleld. H. (1985). Points, lines, and their representations. For the Learning
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ol Mathematics, 5(3), 2-6.

This article deals with misconceptions. it is primarily a study of language conlusion. rather
than one of mathematical thinking. The author points out properties of graphs that make
them unique as a symbol system. She discusses points, lines, and their representations.
She explores, through discussion, the ways in which 7th graders and college seniors
{teachers) think about points and fines.

Eindings: ‘

-Both groups think of points and fines in significantly different ways than do
mathematicians

-In general, did not distinguish between the abstract concepts and the physical
representations of points and lines.

-Misconceptions were manifested in following ways:
*Lines have width
*Points are entities added to lines
*Points have a definite size and shape

-Their misiaken ideas are based on:
1) the commui representation of points and lines in textbooks and instruction
2) everyday uses of the terms

Concdlusion;

it students do not distinguish between abstract concepts and their physical
representations, then their concepts will include features of those physical
representations that are not part of the concepls as used by mathemalicians. Instruction
needs to take this into account.
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Markovits. Z., Eylon, B.., & Bruckheimer, M. (1986). Functions today and
yesterday. For the Learning of Mathematics, 6(2), 18-28.

Purpose: The purpose of the study was fo investigate junior high-school (9th grade)
students’ understanding of the concept of function as well as their difficuities and
misconceptions. The concept of function was leamed through the set definition.

Three "sub-concepls” that comprise a8 function, domain, range, and rule of
correspondence {(many o one or one to many). were addressed in the study.

Of the four common forms of representation of a funclion {verbal, arrow diagram, algebraic,

and graphical) the study is restricted to two: algebraic and graphical. -
Subjects: The subjects were about 400 Sth grade students (ages 14-15) in israel.

Method: items (problems) were designed to assess eight components of understanding
the concept of function. All functions were "abstract,” involving no context or situations.

Besults: The results were based on written solutions to the problems. The main findings
were:
1) Three types of functions caused difficulty: the constant one, piecewise, and
discrete.
2) Transiation trom graphical representation to algebraic was more difficult than vice
versa.
3) The variety of examples in the students' repertoire was Himited. There was an
excessive adherence lo finearity.
4) In both representations the concepts of preimage and image were only partly
understood.
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Preece, J. {(1983). Graphs are not straightforward. In T.R.G. Green & S.J. Payne

(Eds.), The psychology of computer use: A European Perspective (pp.
41-56). London: Academic Press.

Purpose:: The purpose of the study was to investigate how much of the information
presented in a graph pupils can interpret in practice.

Sample: The sample consisted of 122 pupils, 14 & 15 years old

Method: Pupils were given specific tasks that required them lo interpret mulliple curve
graphs, all representing a situation (changes in populations of pond organisms). The

graphs are presented on a computer display. A computer simulation program was used for
this purpose. Think-aloud protocois were collected for a few of the subjects.

An analysis of what interpreting such a graph involves was carried out, involving the
following features:

1) Domain specific concepts (about the situation)

2) Graph concepis

3) The number of graphs, of grouping of the curves, of dependent variables (and

type of variable)

4) The absence of scales

5) The axes--what do they represent?

6) The actual syntax of the graph

Results: Findings point to 12 different sources of emrors:
1) Reading and plotting points
2) Relative reading
3) Anintervalis interpreted as a point (answers to "when?”)
4) Concepts arising from the variables were not understood
5) World knowledge interferes
6) A pronounced graphical feature distracts the pupil
7) Misinterpretation of a symbol
8) Confusion caused by too many variables
9) Only one curve on a muitiple curve display is interpreted
10) Fallure to transfer information between graphs
11) Gradients are confused with maximum and minimum

12) The graph is interpreted iconically
Thers are three calegories of error:
1) Cues--errors caused by language or graph (#3, 5, 6, 12)
2) Reading errors--(#1, 2, 8, 10, 9, 12)
3) Conceptual erors--(#3,4, 7,11, 12)

More details on this can be found in Preece, 1984b.
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Preece, J. (1984a). A study of pupiis’ graph concepts with a qualitative

July

interactive graph sketching program. Computer Education, 8(1), 159-163.

The paper discusses a pHot study in England which investigated 4 pupiis (3 fourth-year
boys aged 14 and 1 fifth-year girl aged 14) working with an interactive computer program
called SKETCH. This program has been developed to research into how pupils develop

concepts of gradient (stope) through sketching and interpreting graphs.

Four kinds of data were collected:
1) Pupils’ answers to a written test (about a time/temperature graph)
2) An audio cassette recording of the complete session (about 50 minutes) with each
pupil
3) The pupils’ sketches which were stored on disc
4) Notes of interesting observations and pupifls’' comments

The dala suggest that the program provides a motivating and fiexible environment in which
pupils gain an intuitive understanding of gradient by becoming involved in a series of
simple sketching (modelling) and interpreling activities.
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Preece, J. (1984b).
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B NGO grg

tl= : INSUCGS IS < | 139
(CAL Research Group Tech. Rep. No. 51). Institute ol Educational
Technology, The Open University, Walton Hall, Milton Keynes, England.

This is a theoretical overview based on research findings that have been reported, most of
which include studies in which the author was involved.

Main findings across studies:
1) Students tend to interpret graphs representing situations iconically {(context
interferes)
2) Students have 2-3 dilferent notions of a gradient, and apply the one whici fits best
the context and the graph
3) Simulated display influenced the development of puplis’ notions (some physically
based) .
4) Students brought a lot of irrelevant contextual knowledge

In all findings, context appears to strongly influence students’ interpretations.
The author discusses how the above findings relate to the following theories:
1) Piagetian theory

2) Alternative conceptions and frameworks {in science education)
3) Mental models

32

CLIP-90-01 1990



Leinhardt, Zaslavsky, & Stein 26 Annotated Bibliography

Schoenfeid, A.H. (1987). On having and using geometric knowledge. In J.
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Hiebert (Ed.), Conceptual and
mathematics (pp. 225-264). Hiliside NJ: Eribaum.

The generic issue addressed in this chapter is: "What . if anything, will assure that a
student (a) becomes fluent in performing the symbolic manipulations in that domain. and
(b) comes to understand the deep maaning of the mathematical notions represented by
the symbols and the procedures that are used lo operale on them?" (page 227).

In general there are two phases:

Phase 1 - Concrete representations serve as a vehicle for making sense of abstract
symbolic operations. )

Phase 2 - Abstracting over the isomorphic aspects of the two symbolic systemns leads
to an understanding of the underlying mathematical notions and procedures.

A concrele representation, which serves as a reference world (W) has a dual nature: The
objects in W are meaningtul entities and their attributes and the operations on them are
embedded in that broad meaning structure. But W can be thought of as a symbolic
system, because it is a representation of mathematical entities and procedures {those of
the symbolic world, w).

The symbolic system (w) aiso has a dual nature: It is a symbolic representation of a
mathematical idea { perhaps more abstract), and it also is an abstraction of some aspects of
w.

Two assumptions:

1) {Undesstanding meanings, operations and interrelationships within objects in W} +
{Understanding the nature of the mapping from W to w} => {Understanding of the
symbols and procedures in w}. (phase 1) '

2) {Understanding the structures of different symbofic systems that represent the
same mathematical idea) + {identilying and perceiving the undevlying structural morphisms
between these systems) => {Abstracting the underlying mathematical idea}. {phase 2)

Cornplicating tactors:

1) A dilemma between the importance of having the concrete representation as
natural and reasonable as possible and the danger of being too natural to be able to see
through it.

2) Anisomorphis:nlromwmwatleve!olsyMaxmaynolextendtoanisomorptﬂsmat
the level of attributed meaning and coherence (page 236).

3) Usually there is not one particular representation that captures all aspects of the

mathematical idea.
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Schoenfeid., A. (1988).
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LE.S Unpubllshed manuscripl Unlversny ot
California, Berkeley CA.

The paper deals with a computer-based microworld cailled GRAPHER and the kind of
learning and understanding it enhances. The goal of this study was lo provide the
“cognitive support structure” 0 help students leam about functions and graphs.

As a starting point, the paper presents an analysis of what it means to understand graphs
of straight fines. These aspects of understanding are very complex and include: general
geometric knowledge about fines, knowledge of algebra, equation solving, functions and

their algebraic representations, knowledge about the Cartesian plane. knowiedge of the
relationships between functions and their graphs, knowledge about conventions, being

able to think simuitaneously about different meanings of the graph of y=mx + b, knowing
different algebraic representations for straight lines, and having the interconnectedness
knowledge of the aboyv ».

GRAPHER was designed, keeping the following six principles in mind:

1) To faciiitate "conceptual concretizing”.

2) To exploit, whenever possible, the dynamic and interactive nature of the
computational medium o enable students to operate “directly” on conceptual
entities and gain meaning.

3) To make overt the finks the students should see.

4) To allow students to focus on conceptual issues without having to worry about
technical work.

5) To support "meaning exploration” rather than “knowiedge telling”.

6) To encourage students’ reflection on their understandings.

A learning session with a student working with GRAPHER illustrates the very localized,

disconnected, and fragile nature of knowledge structures of a particular subject matter and
the ways they grow and change.
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Stein, M.X.. Baxter, J., & Leinhardl, G. (in press). Subject matter knowledge for
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eiementary instruction: A case from functions and graphing. American
jonal f I.

The purpose of this article is to examine the role and function of subject-matter conient
knowledge in teaching. Until recently, research on the relationship between teachers’
subject-matler knowledge and their studenis’ leaming has not Jeen very extensive or
useful . By locusing specifically on the relationship of one fifth-grade teacher's subject-
matter knowledge to several aspects of his classroom instruction, the authors attempt to
define and articulate how subject-matier knowledge influences what is taught and how it is
taught.

The teacher. called Mr. Gene, had taught elementary mathematics for 18 years. He was
interviewed on both his knowledge of the topic and knowledge of how to teach that topic.
plus other relevant items. From these interviews, the results of a card sort task, and
videotapes of his teaching, the authors developed a characterization of Mr. Gene's
knowledge base, a description of the four lessons, and an analysis of their
interretationships. '

The results of the interview and card sort task suggest that Mr. Gene's understanding of
junctions and graphing was less developed than the math experts’ understanding.
Furthermore, limitations in the teacher's knowledge were found to relate to conceptual
holes and missed opportunities in his classroom presentations. For example, Mr. Gene’s
arrangement of the cards in the card sort task suggested a knowledge base that was nol
elaborately ditferentiated or hierarchically organized in terms of mathematically powertul
criteria. Most noteworthy, the fact that graphs and equations are altemate representations
of functional retationships appeared 1o be missing from his understanding. Similarly, the
authors' analysis of his instruction shows that he failed to develop some imporiant
conceptual relationships, including an appreciation of the special relationship between
functions and graphs that was a key point of the third and fourth lessons.

For each problem area identified in Mr. Gene's instruction, the authors are able to draw
conneclions between what was or was not preserited in the classroom and Mr. Gene's
idiosyncrasies or missing pieces in his knowledge base. They conclude that such gaps in
teachers’ knowledge lead to conceptual gaps in instruction and offer specific suggestions
for ameliorating such deficiencies in both the knowledge base and teaching. Their findings
also suggest that teachers’ beliefs regarding the importance and purpose of a specific
mathematical topic have a direct influence on the degree to which aspects of a topic are
emphasized and on whether they are included in instruction. This research points to the
need for more delailed studies of the levels and kinds of subject-matter knowledge that
can support mathematical instruction as a necessary step loward determining what subject-
matter understanding new and practicing teachers should possess.
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Stein, M.K., & Leinhardt, G., (1969). Interpreting graphs: An analysis of early
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performance and reasoning. Unpublished manuscript, University of

Pittsburgh, Learning Research and Development Center, Pittsburgh PA.

This paper begins with the observation that. although society deems graphing skills lo be
important, the research community knows surprisingly fittle about how children come lo
understand and effectively use graphs. The purpose of the study on which the paper was
based was two-fold. First, the authors aimed to identily the areas of graphing knowledge
and skifis with which elementary students have the most and the least degree of difficuity.
Second, they attempt to identify the ways in which children reason about those topics
identified as more difficuil.

" The data base for the study consisted of 10 elementary students’ responses to inlerviews

on the topics of functions and graphing. An interviewer administered a series of muiti-step
problems and asked the students to talk aloud as they were solving the problems or to
explain how they had arrived at an answer. The interview problems related to four main
areas of graphing knowledge and skills: (1) the plolting and reading of individual points; (2)
the construction ot Cartesian coordinate systems and graphs; (3) the relative (global)
interpretation of graphs; and (4) translating between graphs and other representational
systems of functional relationships (i.e., ordered pairs and function rules) . After the
interviews were transcribed, two kinds of analyses were performed: a global scoring of the
students’ performance on the entire set of interview items and a more detailed analysis of
the students’ reasoning processes as they worked through those problems which the first
analysis suggested were the most difficuit.

With respect to the students’ overall performance, the resulls suggested that the
students had #ttle difficulty with the reading and plotting of points or with the construction
of Cartesian coordinate systems. In addition, they could perform transiations that required
them to move from ordered pairs or function rules {o graphs. Along with the relative graph
interpretation problems, however, transiations that proceeded from graphs o function
rules proved o be difficult. Thus, the authors conducted a more detailed examination of
those tasks requiring relative graph interpretation skills and those requiring transiations
that used graphs as thelr initial input.

The results of the analysis of data relating 1o refative graph interpretation skills suggested
that students were more likefy to be successful when the task explicitly drew their attention
to the variables represented on the axes. In addition, two distinct styles of leamning to
interpret graphs in a relative fashion seemed to emerge. Some students inilially focussed
on pints of specific x.y pairs which they then “decoupled” (i.e., pulled apart the x
coordinate and the y coordinate) in order 1o separately track first the x values and then the
y values. Others began with spatial scanning of the entire line in order to assess ils overall
shape and direction. The authors termed these two strategies, both of which were
successful, boltom-up and lop-down, respectively.

The resuits of students’ responses 1o a task in which they were asked to provide arule for a

graph revealed that the majority of successful responses involved deducing the rule from
one specific x.y pair and then checking it against a second ordered palr. A second, less-
frequently used method involved comparing the changes in the x variable with the
changes in the y variable in a relative fashion. The authors suggest that the first method
resembied a bottom-up stralegy because it began with a specific point and worked toward
an answer that took into account the entire line, whereas the second method resembled
the top-down strategy because it began with an examination of the behavior of the wo
variables and moved toward a specific numeric answer.

The authors interpret their findings about the top-down and bottom-up strategies in light of
recent debates regarding optimal methods and sequences for elementary graphing
instruction. They argue that both siralegies are valid leaming strategies and that
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researchers should focus on designing instructional methods that complement or build on
both styles.
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Vinner, §. (1983). Concept definition, concept image and the notion of function.
) international Journal of Mathematics Education In Science and
Technology, 14(3), 293-305.

A simple model for cognitive processes is constructed using the notions of concept image
and concept definition. The model is used to analyze some phenomena in the process of
the leaming of the function concept.

Sample: The sampie consisted of 65 tenth grade and 81 eleventh grade students in
Israel,

Procedure: Students were given a questionnaire with 5 questions. The first four gave a
description {3 verbal and 1 graphical) of a set of conditions (properties), and the studentis
were supposed lo decide whether or not there exists a function fuifiling those conditions.
The students had to choose between yes and no and to write an explanation for the
choice they made. The fifth question was: "In your opinion, what is a function?” Thae first
four questions were consiructed 1o get an idea abount students’ concept images regarding
a function, while the last one examined their concept definition.

Findings: With respect to students’ concept images: some concept images were nol
consistent with the textbook definition {though sometimes consistent with the student's
own definiton). Some of those concept images are:
1) A tunction shouid be given by one nule.
2) A function can be given by several rules relating to disjoint domains providing these
are haif lines or inlervals.
3) Functions (which are not algebraic) exist only if mathematicians officially recognize
them (e.g., by iabeling them).
4) A graph of a tunction shouid be “reasonable.”
5) A function is a one-to-one correspondence.

Four main calegories were distinguished in respect to students’ response to the filth

question:
1) The textbook definition. basically. . ............ (57%)
2) The function is a rule of correspondence. .. . . .. (14%)
3) The function is an algebraicterm. . ... ... ... ... (14%)
4) Some elements in the mental picture are
taken as a definition for the concepts .. .. ...... { 7%)

implications for teaching are discussed.

38

July CLIP-90-01 . 1990




Leinhardt, Zaslavsky, & Stein 32 Annotated Bibliography

wagner, S. {1981). Conservation of equation and function under transiormaticns

of variable. Journal for Research In Mathematics Education, 12(2), 107-
118.

Purpose: The intention of the study was to examine the extension of Piaget's theory of
conservation 1o relational concepts. The study also looked at the “students’ abilily to
conserve equation and function under alphabetic transformations of literal variables.”
Conservation is defined as the understanding that “the critical atfribute, the essence of the
conceplt, is invariant under transformations of certain imelevant attributes.”

Sampie: The sample consisted of 30 middie and high school students. Hali of the sample
was gitls and 15 of the students were in middie school. The median age lor the middle
school sample was 13 and the median age jor the high school sample was 16 1/2.

Procedure: Each student was interviewed for about 20 minutes during school hours. The
instrument consisted of a series of equations and function charts in which the variables
had been interchanged. The students were asked to compare the stalements and
determine whether or not the change in variable symbol affected the referent of the
variable.

Findings: A significant association was not found between age and the ability to conserve
either equation or function. However, a significant association was found between the
ability fo conserve and having completed at ieast one semester of algebra. Also, "ess than
halt of the students interviewed gave conserving responses to any one of the four tasks.”

Conclusions/implications: First, the study is very limited because of the size of the sample

and the nature of the pool. Second, each type of conservation task was only presented
once.

The resuils of the study pointed out two common misconceptions that are often heid
about functions: "(a) that changing a variable symbol implies changing the referent and (b)
that the linear ordering of the alphabst corresponds to the linear ordering of the number
system.”

The relationship between mathematical background and the ability to conserve suggests
that training is an important factor in conservation. The study resuits aiso support the

theory that one can attain formal operational thought in some areas of cognitive ability but
not necessarily afl.
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wavering, M.J. (1985, Aprit). Ihe logical reasoning necessary 1o make line
graphs. Paper presented at the annual meeting of the National

July

Association for Research in Science Teaching, French Lick Springs,
indiana.

Purpose: The purpose of the study was to delermine the logical reasoning processes
necessary to construct line graphs. Three types of line graphs were used: a straight fine
with a positive siope, a straight line with a negalive slope, and an exponentially increasing
curve.

Sample: The sample consisted of students in math and science dlasses in middie and high
school.

Method: Three research instruments were used. one for each type of line graph. Each
research instrument consisted of a set of instruction, data to make a graph. and two
uniined pieces of paper. No time constraints were set for accomplishing the task. Students
were required to piot a graph and also to account for their thinking process in writing.

The responses weie classified into one of nine categories. The categories ranged from no
attempt to make a graph, to a complete graph stating the relationship between the
variables. The categories in between represented increasingly more successtul attempis
at ordering data in one or both variables to correct scaling of the data on the axes.

Resulte: Middie school subjects exhibited behavior mainly in the first four calegories.
Ninth and tenth graders overlapped with middle school and highschool subjects, and 11th
and 12th graders exhibited behaviors mainly in the last live calegories. The author
suggests that the reasoning that took place could be characterized in Plagelian terms.
The response categories appear 1o be valid with respect to the three types of graphs.
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